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Lecture 18

Sensitivity Functions
• Comparison of Filter Structures

• Performance Prediction

• Design Characterization



How does the performance of these bandpass filters compare?
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• Component Spread

• Number of Op Amps

• Is the performance strongly dependent upon how DOF are used?

• Ease of tunability/calibration (but practical structures often are not calibrated)

• Total capacitance or total resistance

• Power Dissipation

• Sensitivity 

• Effects of Op AmpsR
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Comparison of 4 second-order LP filters
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Some Observations

• Seemingly similar structures have dramatically different 
sensitivity to frequency response of the Op Amp

• Critical to have enough GB if filter is to perform as desired

• Performance strongly affected by both magnitude and 
direction of pole movement

• Some structures appear to be totally impractical – at least 
for larger Q

• Different use of the Degrees of Freedom produces 
significantly different results

Sensitivity analysis is useful for analytical characterization of 

the performance of a filter

R
e
v
ie

w
 f

ro
m

 l
a
s
t 

ti
m

e



C1

C2

R2R1

VIN

VOUT
K

  1 2 1 2

2

1 1 2 1 2 2 1 2 1 2

1

R R C C
T s =K

1 1 1-K 1
s +s + + +

R C R C R C R R C C

 
 
 

C1 C2

R2R1

VIN

VOUT
-K

R3

R4

 
         

1 2 1 2

1 3 1 4 2 3 2 12 1 2

1 1 3 4 2 2 2 1 1 2 1 2

1

R R C C
T s = -K

1+ R R 1+K + R R 1+ R R + R RR C1 1 1
s +s 1+ + + 1+ +

R C R R C R C C R R C C

     
     

       

What causes the dramatic differences in performance between these two structures?

How can the performance of different structures be compared in general?

Equal R, Equal C, Q=10 Pole 

Locus vs GBN
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How can the performance of different structures be compared in general?

• Equations for key performance parameters give little insight into the differences

• Expressions for key performance parameters quite complicated



C

C

RR

VIN

VOUT
K

1
Q = 

3-K

C C

RR

VIN

VOUT
-K

R3

R

 
2 2

2

2 2

1

R CT s = -K
5 5+K

s +s +
RC R C

   
   
   

5+K
Q = 

5
0

5+K
ω  = 

RC

 
 

2 2

2

2 2

1

R CT s =K
3-K 1

s +s +
RC R C

 
 
 

1
0ω  = 

RC

How can the performance of different structures be compared in general?

Equal R, Equal C implementations

• Equations for key performance parameters give little insight into the differences

• GB effects absent in this analytical formulation !!!! 

• Effects of individual components is obscured in these expressions

• Analytical expressions for ω0 and Q much simpler



Modeling of the Amplifiers
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Different implementations of the amplifiers are possible

Have used the op amp time constant in these models 
-1 = GB
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ω0 and Q in these expressions are for ideal op amp

DI(s) is the D(s) if the OA is ideal

DRC0(s) is the D(s) of RC circuit with K=0
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GB effects in -KRC Lowpass Filter

ω0 and Q in these expressions are for ideal op amp
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All linear performance effects can be obtained from this formulation 

Op amp introduced an additional pole and moves the desired poles



Effects of GB on poles of  KRC and -KRC Lowpass Filters
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• Analytical expressions for ω0, Q, poles, zeros, and other key parameters are unwieldly in 

these circuits and as bad or worse in many other circuits (require solution of 3rd order 

polynomial!!)

• Sensitivity metrics give considerable insight into how filters perform and are widely used to 

assess relative performance

• Need sensitivity characterization of real numbers as well as complex quantities such as 

poles and zeros

• Since analytical expressions for key parameters are unwieldly in even simple 

circuits, obtaining expressions for the purpose of calculating sensitivity 

appears to be a formidable task !

• If sensitivity expressions are obtained for a given structure, it can be catalogued 

rather than recalculated



Sensitivity Characterization of Filter Structures

Let F be a filter characteristic of interest

F might be ω0 or Q of a pole or zero, a band edge, a peak frequency, a BW, 

T(s), |T(jω)|, a coefficient in T(s), etc

Can express F in terms of all components and model parameters as

F=f(R1, …Rk1, C1, … Ck2, LI1,…LIk3, τ1, … τk4, W1,…Wk5, L1, …Lk5,….)

The differential dF of the multivariate function F can be expressed as
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F=f(x1,x2,  …xk)
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Define the standard sensitivity function as
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Is widely used except when x or f assume extreme values of 0 or ∞

Define the derivative sensitivity function as 
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Consider the normalized differential dF
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This approximates the relative (percent if multiply by 100) change in 

F due to changes in ALL components
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This can be expressed in terms of the standard sensitivity 

function as

This relates the relative (percent if multiply by 100) change in F 

to the sensitivity function and the relative (percent if multiply by 

100) change in each component



Consider the normalized differential
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This can be expressed as

Often interested in                evaluated at the ideal (or nominal value)
dF

F
If the nominal values are all not extreme (0 or ∞), then
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The normalized differential – a different perspective

Consider the multivariate Taylors series expansion of F
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The normalized differential – a different perspective

Consider the multivariate Taylors series expansion of F
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Note this is essentially the same expression that was arrived at from the 

sensitivity analysis approach
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Dependent on circuit structure (for some 

circuits, also not dependent on  components)

Dependent only on components 

(not circuit structure)

The sensitivity functions are thus useful for comparing 

different circuit structures
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The variability which is the product of the sensitivity 

function and the normalized component differential is 

more important for predicting circuit performance
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Variability Formulation

Variability includes effects of both circuit structure and 

components on performance

If component variations are small, high sensitivities are acceptable

If component variations are large, low sensitivities are usually critical 
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Likewise
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Thus a 1% increase in R will cause approximately a 1% decrease in ω0

a 1% increase in C will cause approximately a 1% decrease in ω0

a 1% increase in both C and R will cause approximately a 2% decrease in ω0
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At this stage, this is just an observation about summed sensitivities but later 

will establish some fundamental properties of summed sensitivities
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Consider

The nominal value of the time constant of the op amps is 0 so this expression 

can not be evaluated at the ideal (nominal) value of GB=∞

Let  {xi} be the components in a circuit whose nominal value is not 0

Let  {yi} be the components in a circuit whose nominal value is  0
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This expression can be used for predicting the effects of all components in a circuit
Can set YN=0 before calculating           functions
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Low sensitivities in a circuit are often preferred but in some 

applications, low sensitivities would be totally unacceptable

Examples where low sensitivities are unacceptable are circuits 

where a charactristics F must be tunable or adjustable!



Some useful sensitivity theorems
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Some useful sensitivity theorems (cont)
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Stay Safe and Stay Healthy !



End of Lecture 18


